Thursday 10 November 2016

Modelo De Media Móvil Ponderado Exponencial (Ewma)


EWMA 101 El enfoque EWMA tiene una característica atractiva: requiere relativamente pocos datos almacenados. Para actualizar nuestra estimación en cualquier punto, sólo necesitamos una estimación previa de la tasa de varianza y el valor de observación más reciente. Un objetivo secundario de EWMA es seguir cambios en la volatilidad. Para los valores pequeños, las observaciones recientes afectan rápidamente la estimación. Para valores cercanos a uno, la estimación cambia lentamente en función de los cambios recientes en los retornos de la variable subyacente. La base de datos RiskMetrics (producida por JP Morgan y puesta a disposición del público) utiliza la EWMA para actualizar la volatilidad diaria. IMPORTANTE: La fórmula de EWMA no asume un nivel de varianza promedio a largo plazo. Por lo tanto, el concepto de volatilidad significa la reversión no es capturado por la EWMA. Los modelos ARCH / GARCH son más adecuados para este propósito. Lambda Un objetivo secundario de EWMA es rastrear los cambios en la volatilidad, por lo que para los valores pequeños, la observación reciente afecta rápidamente a la estimación, y para valores cercanos a uno, la estimación cambia lentamente a los cambios recientes en los retornos de la variable subyacente. La base de datos RiskMetrics (producida por JP Morgan) y puesta a disposición pública en 1994, utiliza el modelo EWMA para actualizar la estimación diaria de la volatilidad. La empresa encontró que a través de un rango de variables de mercado, este valor de proporciona pronóstico de la varianza que se aproxima más a la tasa de varianza realizada. Las tasas de varianza realizadas en un día en particular se calculó como un promedio igualmente ponderado de los siguientes 25 días. Del mismo modo, para calcular el valor óptimo de lambda para nuestro conjunto de datos, tenemos que calcular la volatilidad realizada en cada punto. Hay varios métodos, así que elige uno. A continuación, calcule la suma de los errores al cuadrado (SSE) entre la estimación de EWMA y la volatilidad realizada. Finalmente, minimice el SSE variando el valor lambda. Suena simple Es. El mayor desafío es acordar un algoritmo para calcular la volatilidad realizada. Por ejemplo, la gente en RiskMetrics eligió el siguiente 25 días para calcular la tasa de varianza realizada. En su caso, puede elegir un algoritmo que utiliza los precios de volumen diario, HI / LO y / o OPEN-CLOSE. FAQ Q 1: Podemos usar EWMA para estimar (o pronosticar) la volatilidad más de un paso adelante? La representación de volatilidad de EWMA no asume una volatilidad promedio a largo plazo, y por lo tanto, para cualquier horizonte de pronóstico más allá de un paso, la EWMA devuelve un Valor constante: Calcular la Volatilidad Histórica Utilizando la EWMA La volatilidad es la medida de riesgo más comúnmente utilizada. La volatilidad histórica en este sentido puede ser volatilidad histórica (observada a partir de datos pasados), o podría volatilidad implícita (observada a partir de los precios de mercado de los instrumentos financieros). La volatilidad histórica se puede calcular de tres maneras: Volatilidad simple, Promedio (EWMA) GARCH Una de las principales ventajas de EWMA es que da más peso a los últimos resultados, mientras que el cálculo de los retornos. En este artículo, vamos a ver cómo la volatilidad se calcula utilizando EWMA. Por lo tanto, vamos a empezar: Paso 1: Calcular los retornos de log de la serie de precios Si estamos mirando los precios de las acciones, podemos calcular el diario lognormal rendimientos, utilizando la fórmula ln (P i / P i -1), donde P representa Cada día cierre el precio de las acciones. Necesitamos usar el registro natural porque queremos que los rendimientos sean continuamente compuestos. Ahora tendremos rendimientos diarios para toda la serie de precios. Paso 2: Cuadrar los retornos El siguiente paso es tomar el cuadrado de retornos largos. Este es en realidad el cálculo de la varianza simple o la volatilidad representada por la siguiente fórmula: Aquí, u representa los retornos, y m representa el número de días. Paso 3: Asignar pesos Asignar pesos de modo que las ganancias recientes tengan mayor peso y las ganancias mayores tengan menor peso. Para esto necesitamos un factor llamado Lambda (), que es una constante de suavizado o el parámetro persistente. Los pesos se asignan como (1-) 0. Lambda debe ser menor que 1. La métrica de riesgo usa lambda 94. El primer peso será (1-0.94) 6, el segundo peso será 60.94 5.64 y así sucesivamente. En EWMA todos los pesos suman 1, sin embargo están disminuyendo con una proporción constante de. Paso 4: Multiplicar retornos al cuadrado con los pesos Paso 5: Tome la suma de R 2 w Esta es la varianza EWMA final. La volatilidad será la raíz cuadrada de la varianza. La siguiente captura de pantalla muestra los cálculos. El ejemplo anterior que vimos es el enfoque descrito por RiskMetrics. La forma generalizada de EWMA puede ser representada como la siguiente fórmula recursiva: Comparar, contrastar y calcular los enfoques paramétricos y no paramétricos para estimar la volatilidad condicional 8230 Incluyendo: APROXIMACIÓN GARCH Incluyendo: LISO EXPONENCIAL (EWMA) Suavizado exponencial (paramétrico condicional) Los métodos modernos ponen más peso en la información reciente. Ambos EWMA y GARCH ponen más peso en la información reciente. Además, como EWMA es un caso especial de GARCH, tanto EWMA como GARCH emplean el suavizado exponencial. GARCH (p, q) y en particular GARCH (1, 1) GARCH (p, q) es un modelo heteroscedástico condesorregresivo general. Los aspectos clave son: Autoregresivo (AR). La variación de mañana 8217s (o volatilidad) es una función regresada de la variance8212s de today8217s regresa sobre sí mismo Condicional (C). La varianza de tomorrow8217s depende8212 es condicional on8212 la varianza más reciente. Una varianza incondicional no dependería de la variante Heteroskedastic de hoy en día (H). Las variaciones no son constantes, fluyen a lo largo del tiempo, GARCH retrocede en términos históricos o 8220lagged8221. Los términos rezagados son variantes o retornos cuadrados. El modelo genérico GARCH (p, q) regresa en (p) retornos cuadrados y (q) variaciones. Por lo tanto, GARCH (1, 1) 8220lags8221 o regresa en el último período 8217s cuadrado de retorno (es decir, sólo 1 retorno) y el último período 8217s varianza (es decir, sólo 1 varianza). GARCH (1, 1) dada por la siguiente ecuación. La misma fórmula de GARCH (1, 1) puede ser dada con parámetros griegos: Hull escribe la misma ecuación de GARCH como: El primer término (gVL) es importante porque VL es la varianza media de largo plazo. Por lo tanto, (gVL) es un producto: es la varianza media ponderada a largo plazo. El modelo GARCH (1, 1) resuelve la varianza condicional en función de tres variables (varianza anterior, retorno anterior2 y varianza de largo plazo): La persistencia es una característica incrustada en el modelo GARCH. Consejo: En las fórmulas anteriores, la persistencia es (b c) o (alfa-1 beta). Persistencia se refiere a la rapidez con que la varianza (o lentamente) vuelve a 8220decays8221 hacia su promedio a largo plazo. La alta persistencia equivale a la desintegración lenta y la disminución de la regresión hacia la media8221. La baja persistencia equivale a una rápida decaimiento y una rápida reversión a la media.8221 Una persistencia de 1,0 no implica una reversión media. Una persistencia de menos de 1.0 implica una reversión a la media, 8221 donde una menor persistencia implica una mayor reversión a la media. Sugerencia: Como anteriormente, la suma de los pesos asignados a la varianza retardada y retardo al cuadrado es la persistencia (persistencia bc). Una alta persistencia (mayor que cero pero menor que uno) implica una reversión lenta a la media. Pero si los pesos asignados a la varianza retardada y al retardo cuadrado retrasado son mayores que uno, el modelo es no estacionario. Si (bc) es mayor que 1 (si bc gt 1) el modelo es no estacionario y, según Hull, inestable. En cuyo caso, se prefiere EWMA. Linda Allen dice acerca de GARCH (1, 1): GARCH es a la vez 8220compact8221 (es decir, relativamente simple) y notablemente precisa. Los modelos GARCH predominan en la investigación académica. Se han intentado muchas variaciones del modelo GARCH, pero pocas han mejorado en el original. El inconveniente del modelo GARCH es su no linealidad sic Por ejemplo: Resolver para la varianza de largo plazo en GARCH (1,1) Considere la siguiente ecuación de GARCH (1, 1): Supongamos que: el parámetro alfa 0.2, el parámetro beta 0.7, Y Obsérvese que omega es 0.2 pero don8217t error omega (0.2) para la variación a largo plazo Omega es el producto de gamma y la variación a largo plazo. Por lo tanto, si alpha beta 0.9, entonces gamma debe ser 0.1. Dado que el omega es 0.2, sabemos que la varianza de largo plazo debe ser 2.0 (0.2 184 0.1 2.0). GARCH (1,1): Mera diferencia de notación entre Hull y Allen EWMA EWMA es un caso especial de GARCH (1,1) y GARCH (1,1) es un caso generalizado de EWMA. La diferencia más destacable es que GARCH incluye el término adicional para la reversión media y EWMA carece de una reversión media. Así es como obtenemos de GARCH (1,1) a EWMA: Entonces dejamos que 0 y (bc) 1, tal que la ecuación anterior se simplifique a: Esto es ahora equivalente a la fórmula para la media móvil exponencialmente ponderada (EWMA): En EWMA, el parámetro lambda ahora determina el 8220decay: 8221 un lambda que es cercano a uno (lambda alto) exhibe una decadencia lenta. RiskMetrics ™ Approach RiskMetrics es una forma de marca del enfoque de promedio móvil exponencialmente ponderado (EWMA): El lambda óptimo (teórico) varía según la clase de activo, pero el parámetro óptimo global utilizado por RiskMetrics ha sido 0,94. En la práctica, RiskMetrics sólo utiliza un factor de desintegración para todas las series: 183 0,94 para datos diarios 183 0,97 para datos mensuales (mes definido como 25 días de negociación) Técnicamente, los modelos diarios y mensuales son inconsistentes. Sin embargo, ambos son fáciles de usar, se aproximan bastante bien al comportamiento de los datos reales y son robustos a la falta de especificación. Nota: GARCH (1, 1), EWMA y RiskMetrics son paramétricos y recursivos. Resumen GARCH (1, 1) es RiskMetrics generalizado y, por el contrario, RiskMetrics es GARCH (1, 1) está dado por: Los tres parámetros son pesos y por lo tanto deben sumar a uno: Consejo: Tenga cuidado con el primer término en el Ecuación de GARCH (1, 1): omega () gamma () (variación media a largo plazo). Si se le pide la varianza, puede que tenga que dividir el peso para calcular la varianza promedio. Determine cuándo y si un modelo GARCH o EWMA debe usarse en la estimación de la volatilidad En la práctica, las tasas de varianza tienden a ser la media de reverberación por lo tanto, el modelo GARCH (1, 1) es teóricamente superior (8220 más atractivo que 8221) al modelo EWMA. Recuerde que es la gran diferencia: GARCH añade el parámetro que pesa el promedio a largo plazo y por lo tanto incorpora la reversión media. Consejo: Se prefiere GARCH (1, 1) a menos que el primer parámetro sea negativo (lo cual está implícito si alfa beta gt 1). En este caso, GARCH (1,1) es inestable y se prefiere EWMA. Explicar cómo las estimaciones GARCH pueden proporcionar pronósticos que son más precisos. El promedio móvil calcula la varianza basándose en una ventana de observación posterior, p. Los diez días anteriores, los 100 días anteriores. Hay dos problemas con el promedio móvil (MA): Característica de Ghosting: los shocks de volatilidad (aumentos repentinos) se incorporan abruptamente en la métrica MA y luego, cuando la ventana de seguimiento pasa, se caen abruptamente del cálculo. Debido a esto, la métrica MA cambiará en relación con la longitud de la ventana elegida. La información de tendencias no se incorpora. Las estimaciones de GARCH mejoran estas debilidades de dos maneras: A las observaciones más recientes se les asignan pesos mayores. Esto supera fantasmas porque un choque de volatilidad impactará inmediatamente en la estimación, pero su influencia se desvanecerá gradualmente a medida que pasa el tiempo. Se agrega un término para incorporar la reversión a la media Explique cómo la persistencia está relacionada con la reversión a la media. Dada la ecuación GARCH (1, 1): La persistencia es dada por: GARCH (1, 1) es inestable si la persistencia gt 1. Una persistencia de 1,0 indica que no hay reversión media. Una baja persistencia (por ejemplo, 0,6) indica una rápida decaimiento y una alta reversión a la media. Consejo: GARCH (1, 1) tiene tres pesos asignados a tres factores. La persistencia es la suma de los pesos asignados tanto a la varianza retardada como al retardo cuadrado rezagado. El otro peso se asigna a la varianza de largo plazo. Si la persistencia P y el peso G se asignan a la varianza de largo plazo, entonces PG 1. Por lo tanto, si P (persistencia) es alta, entonces G (reversión media) es baja: la serie persistente no es fuertemente revertida; media. Si P es bajo, entonces G debe ser alto: la serie impersistente significa fuertemente que reverte exhibe 8220 descomposición acelerada 8221 hacia la media. La varianza incondicional media en el modelo GARCH (1, 1) está dada por: Explique cómo EWMA descuentan sistemáticamente los datos más antiguos e identifican los factores de desintegración diaria y mensual de RiskMetrics174. La media móvil ponderada exponencialmente (EWMA) viene dada por: La fórmula anterior es una simplificación recursiva de la serie 8220true8221 EWMA que viene dada por: En la serie EWMA, cada peso asignado al cuadrado devuelve una relación constante del peso anterior. Específicamente, lambda (l) es la relación entre los pesos vecinos. De esta manera, los datos más antiguos son sistemáticamente descontados. El descuento sistemático puede ser gradual (lento) o abrupto, dependiendo de lambda. Si lambda es alta (por ejemplo, 0,99), entonces el descuento es muy gradual. Si lambda es baja (por ejemplo, 0,7), el descuento es más abrupto. Los factores de desintegración de RiskMetrics TM: 0.94 para datos diarios 0.97 para datos mensuales (mes definido como 25 días de negociación) Explique por qué las correlaciones de pronóstico pueden ser más importantes que las volatilidades de pronóstico. Al medir el riesgo de la cartera, las correlaciones pueden ser más importantes que la volatilidad / varianza individual del instrumento. Por lo tanto, en relación con el riesgo de la cartera, una previsión de correlación puede ser más importante que las previsiones de volatilidad individual. Utilizar GARCH (1, 1) para pronosticar la volatilidad La tasa de variación futura esperada, en (t) períodos hacia adelante, viene dada por: Por ejemplo, supongamos que una estimación de la volatilidad actual (período n) viene dada por GARCH (1, 1) ): En este ejemplo, alfa es el peso (0,1) asignado al cuadrado anterior (el retorno anterior era 4), beta es el peso (0,7) asignado a la varianza anterior (0,0016). Cuál es la volatilidad futura esperada, en diez días (n 10) Primero, resuelva para la varianza de largo plazo. No es 0.00008 este término es el producto de la varianza y su peso. Dado que el peso debe ser 0,2 (1 - 0,1 -0,7), la variación de largo plazo 0,0004. Segundo, necesitamos la varianza actual (período n). Esto es lo que se nos da más arriba: Ahora podemos aplicar la fórmula para resolver la tasa de variación futura esperada: Esta es la tasa de varianza esperada, por lo que la volatilidad esperada es de aproximadamente 2.24. Observe cómo funciona esto: la volatilidad actual es de unos 3,69 y la volatilidad a largo plazo es 2. La proyección directa a 10 días 8220fades8221 la tasa actual más cercana a la tasa de largo plazo. Previsión de volatilidad no paramétrica

No comments:

Post a Comment